Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins.

Identifieur interne : 000724 ( Main/Exploration ); précédent : 000723; suivant : 000725

Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins.

Auteurs : Chhana Ullah [Allemagne] ; Chung-Jui Tsai [États-Unis] ; Sybille B. Unsicker [Allemagne] ; Liangjiao Xue [République populaire de Chine] ; Michael Reichelt [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Almuth Hammerbacher [Afrique du Sud]

Source :

RBID : pubmed:30168132

Descripteurs français

English descriptors

Abstract

Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.

DOI: 10.1111/nph.15396
PubMed: 30168132
PubMed Central: PMC6585937


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins.</title>
<author>
<name sortKey="Ullah, Chhana" sort="Ullah, Chhana" uniqKey="Ullah C" first="Chhana" last="Ullah">Chhana Ullah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forestry and Natural Resources, Department of Genetics, Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forestry and Natural Resources, Department of Genetics, Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xue, Liangjiao" sort="Xue, Liangjiao" uniqKey="Xue L" first="Liangjiao" last="Xue">Liangjiao Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028</wicri:regionArea>
<wicri:noRegion>0028</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30168132</idno>
<idno type="pmid">30168132</idno>
<idno type="doi">10.1111/nph.15396</idno>
<idno type="pmc">PMC6585937</idno>
<idno type="wicri:Area/Main/Corpus">000C83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C83</idno>
<idno type="wicri:Area/Main/Curation">000C83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C83</idno>
<idno type="wicri:Area/Main/Exploration">000C83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins.</title>
<author>
<name sortKey="Ullah, Chhana" sort="Ullah, Chhana" uniqKey="Ullah C" first="Chhana" last="Ullah">Chhana Ullah</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forestry and Natural Resources, Department of Genetics, Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forestry and Natural Resources, Department of Genetics, Department of Plant Biology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xue, Liangjiao" sort="Xue, Liangjiao" uniqKey="Xue L" first="Liangjiao" last="Xue">Liangjiao Xue</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028</wicri:regionArea>
<wicri:noRegion>0028</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (physiology)</term>
<term>Catechin (metabolism)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Flavonoids (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Oxylipins (metabolism)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (microbiology)</term>
<term>Populus (genetics)</term>
<term>Populus (immunology)</term>
<term>Populus (microbiology)</term>
<term>Proanthocyanidins (metabolism)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide salicylique (métabolisme)</term>
<term>Basidiomycota (physiologie)</term>
<term>Catéchine (métabolisme)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Flavonoïdes (métabolisme)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oxylipines (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (immunologie)</term>
<term>Populus (microbiologie)</term>
<term>Proanthocyanidines (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Catechin</term>
<term>Cyclopentanes</term>
<term>Flavonoids</term>
<term>Oxylipins</term>
<term>Plant Growth Regulators</term>
<term>Proanthocyanidins</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide salicylique</term>
<term>Catéchine</term>
<term>Cyclopentanes</term>
<term>Facteur de croissance végétal</term>
<term>Feuilles de plante</term>
<term>Flavonoïdes</term>
<term>Oxylipines</term>
<term>Proanthocyanidines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30168132</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>221</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins.</ArticleTitle>
<Pagination>
<MedlinePgn>960-975</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.15396</ELocationID>
<Abstract>
<AbstractText>Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.</AbstractText>
<CopyrightInformation>© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ullah</LastName>
<ForeName>Chhana</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-8898-669X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
<Identifier Source="ORCID">0000-0002-9282-7704</Identifier>
<AffiliationInfo>
<Affiliation>School of Forestry and Natural Resources, Department of Genetics, Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Unsicker</LastName>
<ForeName>Sybille B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Liangjiao</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics and Biotechnology, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichelt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-1812-1551</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammerbacher</LastName>
<ForeName>Almuth</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0002-0262-2634</Identifier>
<AffiliationInfo>
<Affiliation>Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>SRP146354</AccessionNumber>
<AccessionNumber>SRP146332</AccessionNumber>
<AccessionNumber>SRP146333</AccessionNumber>
<AccessionNumber>SRP146323</AccessionNumber>
<AccessionNumber>SRP146337</AccessionNumber>
<AccessionNumber>SRP146350</AccessionNumber>
<AccessionNumber>SRP146326</AccessionNumber>
<AccessionNumber>SRP146339</AccessionNumber>
<AccessionNumber>SRP146340</AccessionNumber>
<AccessionNumber>SRP146325</AccessionNumber>
<AccessionNumber>SRP146322</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Max Planck Society</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Agency>Jena School for Microbial Communication</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005419">Flavonoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044945">Proanthocyanidins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>35HDD3NRIE</RegistryNumber>
<NameOfSubstance UI="C404987">flavan-3-ol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8R1V1STN48</RegistryNumber>
<NameOfSubstance UI="D002392">Catechin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002392" MajorTopicYN="N">Catechin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005419" MajorTopicYN="N">Flavonoids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044945" MajorTopicYN="N">Proanthocyanidins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus nigra </Keyword>
<Keyword MajorTopicYN="Y">benzothiadiazole (BTH)</Keyword>
<Keyword MajorTopicYN="Y">chemical defense</Keyword>
<Keyword MajorTopicYN="Y">condensed tannins</Keyword>
<Keyword MajorTopicYN="Y">drought stress</Keyword>
<Keyword MajorTopicYN="Y">flavan-3-ols</Keyword>
<Keyword MajorTopicYN="Y">phytohormones</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30168132</ArticleId>
<ArticleId IdType="doi">10.1111/nph.15396</ArticleId>
<ArticleId IdType="pmc">PMC6585937</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2017;1578:243-248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28220430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;184(1):48-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathog. 2011;2011:716041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22567338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):487-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jul;215(1):351-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28444797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):2107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24550241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Dec;23(23):5771-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25319679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Dec;65(22):6629-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25249073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Mar;167(3):693-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25624398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2465-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1065-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Jan 15;31(2):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Nov;2(11):e123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):924-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jul;159(3):1159-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Feb;40(2):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Aug;23(8):2809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2017 Dec;43(11-12):1097-1108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29129016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jan;165(1):9-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1909-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:651-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):364-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2006 Oct 31;22(2):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 10;88(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9019406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 May;174(1):154-171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28348066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e44467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Dec;4(12):1114-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20514224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Mar 28;11(3):e0149137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27019084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2016 May;157(1):38-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26497326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Dec;175(4):1560-1578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29070515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1795-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 15;7:1872</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28018405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 8;126(5):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Aug;68(15):2043-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17599371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jun;21(6):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18624635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Jul;11(7):643-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9650297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Oct;7(5):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 31;8(5):e64664</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Nov;220(3):760-772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28418581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Mar 1;38(3):457-470</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Apr;38(1):119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15053765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jun;14(6):310-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2714-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Jul;10(1):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8758979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 2;344(6183):516-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):2-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20035037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jun;111(6):1021-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:489-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Sep 1;3(5):371-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):344-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19349968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1379-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Apr;8(4):629-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Oct;39(10):1301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24154955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Feb;201(3):733-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24117919</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>Allemagne</li>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Ullah, Chhana" sort="Ullah, Chhana" uniqKey="Ullah C" first="Chhana" last="Ullah">Chhana Ullah</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</noRegion>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xue, Liangjiao" sort="Xue, Liangjiao" uniqKey="Xue L" first="Liangjiao" last="Xue">Liangjiao Xue</name>
</noRegion>
</country>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Hammerbacher, Almuth" sort="Hammerbacher, Almuth" uniqKey="Hammerbacher A" first="Almuth" last="Hammerbacher">Almuth Hammerbacher</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000724 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000724 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30168132
   |texte=   Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30168132" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020